Zanna, Laure (2019): Proposal to CVP Climate Process Teams on “Ocean Transport and Eddy Energy”.


[1]Nora Loose, Scott Bachman, Ian Grooms, and Malte Jansen. Diagnosing scale-dependent energy cycles in a high-resolution isopycnal ocean model. Journal of Physical Oceanography, 2022. URL:, doi:10.1175/JPO-D-22-0083.1.
[2]Elizabeth Yankovsky, Laure Zanna, and Shafer Smith. Influences of mesoscale ocean eddies on flow vertical structure in a resolution-based model hierarchy. Journal of Advances in Modeling Earth Systems, October 2022. URL:, doi:10.1029/2022MS003203.
[3]Gustavo Marques, Nora Loose, Elizabeth Yankovsky, Jacob Steinberg, Chiung-Yin Chang, Neeraja Bhamidipati, Alistair Adcroft, Baylor Fox-Kemper, Stephen Griffies, Robert Hallberg, Malte F. Jansen, Hemant Khatri, and Laure Zanna. Neverworld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions. Geoscientific Model Development, pages 12, 2022. URL:, doi:10.5194/gmd-15-6567-2022.
[4]Ian Grooms. Limits on the rate of conversion of potential to kinetic energy in quasigeostrophic turbulence. Fluids, 2022. URL:, doi:10.3390/fluids7080276.
[5]Jacob Steinberg, Sylvia Cole, Kyla Drushka, and Ryan Abernathey. Seasonality of the mesoscale inverse cascade as inferred from global scale-dependent eddy energy observations. Journal of Physical Oceanography, 2022. URL:, doi:10.1175/JPO-D-21-0269.1.
[6]Sam Partee, Matthew Ellis, Alessandro Rigazzi, Andrew Shao, Scott Bachman, Gustavo Marques, and Benjamin Robbins. Using machine learning at scale in numerical simulations with smartsim: an application to ocean climate modeling. Journal of Computational Science, June 2022. URL:
[7]Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan Abernathey, Chris Holdgraf, Aurelie Albert, Laurent Brodeau, Eric Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clement Bricaud, Brian Arbic, Jay Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, Rene Schubert, Baylor Fox-Kemper, and William Dewar. Cloud-based framework for inter-comparing submesoscale permitting realistic ocean models. Geoscientific Model Development, July 2022. URL:, doi:10.5194/gmd-2022-27.
[8]Helene Hewitt, Baylor Fox-Kemper, Brodie Pearson, Malcolm Roberts, and Daniel Klocke. The small scales of the ocean may hold the key to surprises. Nature Climate Change, June 2022. URL:, doi:10.1038/s41558-022-01386-6.
[2]Nora Loose, Ryan Abernathey, Ian Grooms, Julius Busecke, Arthur Guillaumin, Elizabeth Yankovsky, Gustavo Marques, Jacob Steinberg, Andrew Slavin Ross, Hemant Khatri, Scott Bachman, Laure Zanna, and Paige Martin. Gcm-filters: a python package for diffusion-based spatial filtering of gridded data. Journal of Open Source Software, February 2022. URL:
[10]Scott Daniel Bachman. An eulerian scheme for identifying fronts and vortices in quasi-balanced flows. Journal of Physical Oceanography, October 2021. URL:
[11]Ian Grooms, Nora Loose, Ryan Abernathey, JM Steinberg, Scott Daniel Bachman, Gustavo Marques, Arthur Paul Guillaumin, and Elizabeth Yankovsky. Diffusion-based smoothers for spatial filtering of gridded geophysical data. Journal of Advances in Modeling Earth Systems, August 2021. URL:
[12]Arthur Guillaumin and Laure Zanna. Stochastic deep learning parameterization of ocean momentum forcing. Journal of Advances in Modeling Earth Systems, March 2021. URL:
[13]Zhiyou Jing, Baylor Fox-Kemper, Haijin Cao, Ruixi Zheng, and Yan Du. Submesoscale fronts and their dynamical processes associated with symmetric instability in the Northwest Pacific subtropical ocean. Journal of Physical Oceanography, 51(1):83–100, January 2021. URL:, doi:10.1175/JPO-D-20-0076.1.
[14]Haijin Cao, Baylor Fox-Kemper, and Zhiyou Jing. Submesoscale eddies in the upper ocean of the Kuroshio Extension from high-resolution simulation: energy budget. Journal of Physical Oceanography, 51(7):2181–2201, July 2021. URL:, doi:10.1175/JPO-D-20-0267.1.
[15]E. P. Chassignet, S. Yeager, B. Fox-Kemper, A. Bozec, F. Castruccio, G. Danabasoglu, Christopher Horvat, W. M. Kim, N. Koldunov, Y. Li, P. Lin, H. Liu, D. Sein, D. Sidorenko, Q. Wang, and X. Xu. Impact of horizontal resolution on global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, September 2020. URL:, doi:10.5194/gmd-13-4595-2020.
[16]Helene T Hewitt, Malcolm Roberts, Pierre Mathiot, Arne Biastoch, Ed Blackley, Eric P Chassignet, Baylor Fox-Kemper, Pat Hyder, David P Marshall, Ekaterina Popova, Anne-Marie Treguier, Laure Zanna, Andrew Yool, Yongqiang Yu, Rebecca Beadling, Mike Bell, Till Kuhlbrodt, Thomas Arsouze, Alessio Bellucci, Fred Castruccio, Bolan Gan, Dian Pustrasahan, Christopher D Roberts, Luke Van Roekel, and Qiuying Zhiang. Resolving and parameterising the ocean mesoscale in earth system models. Current Climate Change Reports, September 2020. URL:, doi:10.1007/s40641-020-00164-w.
[17]Scott D. Bachman. A geometric perspective on the modulation of potential energy release by a lateral potential vorticity gradient. Fluids, August 2020. URL:
[18]Laure Zanna and Thomas Bolton. Data-driven equation discovery of ocean mesoscale closures. GRL, 47(17):e2020GL088376, August 2020. doi:10.1029/2020GL088376.
[19]Z Stanley, SD Bachman, and I Grooms. Vertical structure of ocean mesoscale eddies with implications for parameterizations of tracer transport. Journal of Advances in Modeling Earth Systems, 12(10):e2020MS002151, 2020.
[20]Jihai Dong, Baylor Fox-Kemper, Hong Zhang, and Changming Dong. The seasonality of submesoscale energy production, content, and cascade. Geophysical Research Letters, March 2020. URL:, doi:10.1029/2020GL087388.
[21]Scott D. Bachman, Baylor Fox-Kemper, and Frank O. Bryan. A diagnosis of anisotropic eddy diffusion from a high-resolution global ocean model. Journal of Advances in Modeling Earth Systems, 12(2):e2019MS001904, February 2020. URL:, doi:10.1029/2019MS001904.
[22]L. Zanna, S. Bachman, and M. Jansen. Energizing turbulence closures in ocean models. CLIVAR Exchanges/US CLIVAR Variations, 18(1):3–8, February 2020. URL:, doi:10.5065/g8w0-fy32.
[23]S. T. Cole, K. Drushka, and R. Abernathey. Towards an observational synthesis of eddy energy in the global ocean. CLIVAR Exchanges/US CLIVAR Variations, 18(1):37–41, February 2020. URL:, doi:10.5065/g8w0-fy32.
[24]B. Fox-Kemper and S. Marsland. Sources and sinks of mesoscale eddy energy: introduction to a CLIVAR/US CLIVAR special issue inspired by the March 2019 workshop in Tallahassee, Florida. CLIVAR Exchanges/US CLIVAR Variations, 18(1):1–2, February 2020. URL:, doi:10.5065/g8w0-fy32.
[25]I. Grooms. Mesoscale eddy energy transport. CLIVAR Exchanges/US CLIVAR Variations, 18(1):9–13, February 2020. URL:, doi:10.5065/g8w0-fy32.
[26]D. P. Marshall, J. R. Maddison, J. Mak, S. Bachman, and D. Munday. GEOMETRIC: geometry and energetics of ocean mesoscale eddies and their representation in climate models. CLIVAR Exchanges/US CLIVAR Variations, 18(1):17–22, February 2020. URL:, doi:10.5065/g8w0-fy32.
[27]E. P. Chassignet, S. G. Yeager, B. Fox-Kemper, A. Bozec, F. S. Castruccio, G. Danabasoglu, W. M. Kim, N. Koldunov, Y. Li, P. Lin, H. Liu, D. Sein, D. Sidorenko, Q. Wang, and X. Xu. Impact of horizontal resolution on the energetics of global ocean-sea-ice model simulations. CLIVAR Exchanges/US CLIVAR Variations, February 2020. URL:, doi:10.5065/g8w0-fy32.


[1]Jihai Dong, Baylor Fox-Kemper, Zhiyou Jing, Qingxuan Yang, Jiwei Tian, and Changming Dong. Turbulent dissipation in the surface mixed layer of an anticyclonic mesoscale eddy in the South China Sea. Geophysical Research Letters, January 2022. Submitted. URL:
[2]Gustavo M. Marques, Andrew E. Shao, Scott D. Bachman, Gokhan Danabasoglu, and Frank O. Bryan. A method for applying lateral surface eddy diffusion in ocean models with a general vertical coordinate. Journal of Advances in Modeling Earth Systems, April 2021. Submitted. URL:, doi:10.1002/essoar.10506862.1.